May, 1981]

An MO Study of the Reaction Mechanism of Photoisomerization from Isoxazole via Azirine Intermediate to Oxazole

Hidetsugu Tanaka, Yoshihiro Osamura, Toshio Matsushita, and Kichisuke Nізнімото*

Department of Chemistry, Faculty of Science, Osaka City University, Sumiyoshi-ku, Osaka 558 (Received June 23, 1980)

The reaction mechanism of photoisomerization of isoxazoles and the wavelength dependent photochemistry of azirine intermediates which are the photoisomerization reaction intermediates are investigated theoretically by means of ab initio MO-CI calculation. The present calculation shows that the lowest excited singlet state, S_1 , of azirine intermediate is an $(n \rightarrow \pi^*)$ state localized at the carbonyl chromophore, while the S_2 state is assigned to be an $(n \rightarrow \pi^*)$ state localized at the ketimine chromophore. Intersystem crossing from S_1 to T_1 states of azirine intermediate causes the N-C bond rupture of azirine ring and leads to isoxazole. On the other hand, azirine intermediate in the S2 state proceeds to the C-C bond break of azirine ring and converts to oxazole via intersystem crossing to the T_1 state.

Some of five-membered heterocycles undergo the isomerization reactions in which two of ring atoms interchange their positions under the influence of UVvisible light. For instance, 2-substituted thiophenes were found to rearrange into 3-substituted thiophenes,1) and 1,4-dimethylimidazoles into 1,2-dimethylimidazoles.2) These reactions have been supposed to proceed via bridged-valence intermediates similar to those in the photochemical rearrangements of benzene derivatives.3) Singh and his co-workers have studied the photochemical isomerization of diarylisoxazoles (1) to diaryloxazoles (3) and proposed an alternative

mechanism which proceeds via the three-membered intermediates.4) This reaction is of compelling interest both experimentally and theoretically, since 2aroyl-3-aryl-2H-azirines(2) have the reactivity strongly depending upon the wavelength of irradiation light.4c)

In the present study, ab initio MO-CI calculations have been carried out for isoxazole (1a) (a: $Ar_1 =$ Ar₂=H, see Fig. 1), 2H-azirine-2-carbaldehyde (2a), and oxazole (3a) which are the parent molecules of 1, 2, and 3, respectively.⁵⁾ On the basis of the calculated results, the reaction scheme and the wavelength dependency of the reactivity of 2 are discussed.

Calculations

Ab initio MO calculations of 1a, 2a, and 3a are carried out with the STO-3G minimal basis set using the GAUSSIAN 70 program package. 6) The excited states of these species are calculated within the singly excited configuration interaction (SECI) procedure. In the SECI calculations, all the singly excited configurations are included except the inner-shell excitations.

The ground-state geometries of 1a, 2a, and 3a are optimized using the STO-3G minimal basis set. Figure 2 shows the optimized geometries and those

Fig. 1. Steps in the photoisomerization of isoxazole to oxazole.

determined by means of double resonance modulated microwave spectroscopy⁷⁾ in parentheses. The agreement between the calculated and the observed geometry is satisfactory.

The numbering of atoms of la and 2a is as follows.

Results and Discussion

Excited States of 1a. The energy levels and their assignments of the ground (S₀) and some lowlying excited states of 1a, 2a, and 3a at the optimized ground-state geometries are shown in Fig. 3.

Before discussing the mechanism of the reactions

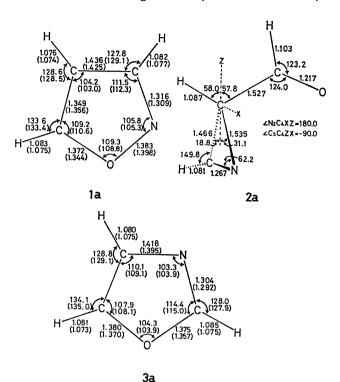


Fig. 2. Optimized ground-state geometries of **1a**, **2a**, and **3a**. **1a** and **3a** have a C_s symmetry. Values in parentheses are those determined by the experiments, see Ref. 7. Units are shown in Å and degree.

(1), (2), and (3) (see Fig. 1), it is of interest to examine the relation between the geometrical deformations and the state energy variation in the low-lying states of **1a** and **2a**. Several geometrical parameters are varied independently from the ground-state geometry. In **1a**, it is found that all of three geometrical variations, the $C_5-C_4-C_3-N_2$ torsional angle θ (by which the N_2 atom rises from the molecular plane and the O_1-N_2 bond is weakened), the $C_3-C_4-C_5-O_1$ torsional angle η (by which the O_1 atom stands up from the molecular plane and the O_1-N_2 bond is weakened), and the rotational angle with respect to the perpendicular

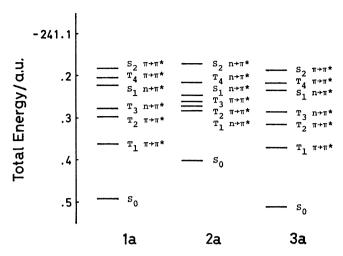


Fig. 3. State energies of the ground (S_0) and some low-lying excited states calculated by vertical excitation approximation.

bisector of the C_3-N_2 bond γ (by which the O_1-N_2 and the C_3-C_4 bonds are weakened simultaneously), give the rather flat potential curves in every excited states (see Figs. 4(a)—4(c)). The results of the independent geometrical variations show that the minima in the potential curves of the S_1 state appear at $\theta=12.3^\circ$ (depth is $ca.1.0 \text{ kcal mol}^{-1}$), $\eta=17.2^\circ$ ($ca.2.3 \text{ kcal mol}^{-1}$), and $\gamma=9.9^\circ$ ($ca.0.7 \text{ kcal mol}^{-1}$). Excited States of 2a. T_1 and S_1 states of this

Excited States of 2α . T_1 and S_1 states of this intermediate are $(n\rightarrow\pi^*)$ states of the carbonyl chromophore and the T_4 and S_2 states are $(n\rightarrow\pi^*)$ states of the ketimine chromophore. Since the $C_5=O_1$ and the $C_3=N_2$ parts are perpendicular to each other, the excited states related these parts do not mix.

There are two ways of the reaction in the excited azirine intermediate. One is the N_2 – C_4 bond break and the O_1 – N_2 bond formation (reaction (2)), and the other is the C_3 – C_4 bond break and the O_1 – C_3 bond formation (reaction (3)). The former is described by the change of the N_2 – C_3 – C_4 bond angle δ (which causes the N_2 – C_4 bond scission) and the out-of-plane torsional angle of the azirine ring (the C_4 –

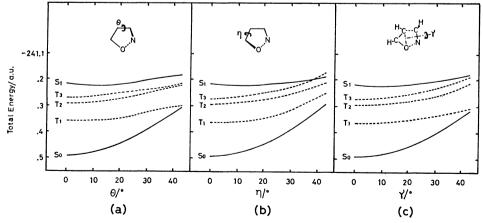


Fig. 4. State energy variations of $\mathbf{1a}$ by the deformations of (a) the C_5 - C_4 - C_3 - N_2 torsional angle θ , (b) the C_3 - C_4 - C_5 - O_1 torsional angle η , and (c) the rotational angle with respect to the perpendicular bisector of the N_2 - C_3 bond γ relative to the ground-state geometry.

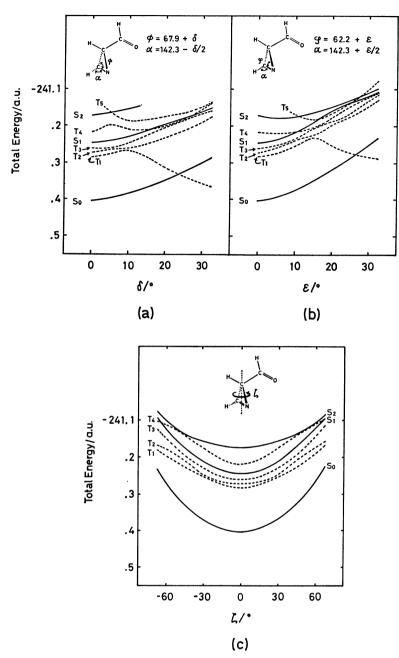


Fig. 5. State energy variations of **2a** by the deformations of (a) the N_2 - C_3 - C_4 bond angle δ , (b) the C_3 - N_2 - C_4 bond angle ϵ , and (c) the out-of-plane torsional angle of azirine ring (the C_4 - N_2 - C_3 plane) ζ relative to the ground-state geometry.

 N_2 – C_3 plane) ζ . The latter is described by the change of the C_3 – N_2 – C_4 bond angle ε (which causes the C_3 – C_4 bond scission) and the geometrical parameter ζ . These three geometrical parameters are varied independently from the ground-state geometry. The results for some low-lying states are given in Fig. 5. Other geometrical parameters are also varied, but such geometrical deformations destabilize considerably any state. Therefore, only the geometrical parameters δ and ε can contribute to the initial stage in the reactions (2) and (3). In other words, the character of the reaction coordinate is varied from δ or ε to ζ gradually as the reaction proceeds.

While the S_1 state does not mix with the S_2 state at $\delta = \varepsilon = 0$, the geometrical deformations cause the

mixing of excited states each other. Let us consider the mechanism of the N_2 – C_4 bond scission due to the geometrical deformation δ . As Fig. 5(a) shows, the T_1 state becomes more stable at large δ . Therefore, this state promotes the N_2 – C_4 bond scission. Since both the S_1 and T_1 states are $(n\rightarrow\pi^*)$ states of the carbonyl chromophore, and their energy separation is rather small, the intersystem crossing (ISC) between these states may rapidly occur. Thus, the excitation to the S_1 state leads to the N_2 – C_4 bond scission via ISC to the T_1 state.

On the other hand, the geometrical deformation ε makes both the T_1 and S_1 states unstable, while it makes the S_2 state stable (see Fig. 5(b)). But the T_1 state becomes much stable at large ε . Therefore,

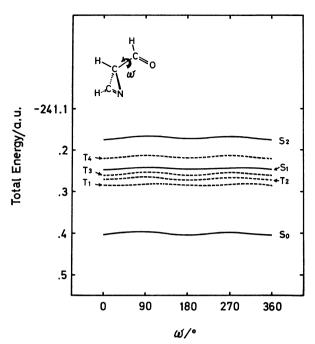


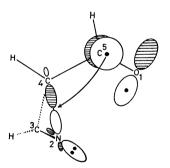
Fig. 6. State energy variation of **2a** by the rotation of **CHO** group ω . When $\omega = 0^{\circ}$ or 360° , **2a** is *s-trans* form. When $\omega = 180^{\circ}$, it is *s-cis* form.

the C_3 - C_4 bond scission occurs *via* ISC from the S_2 to T_1 states.

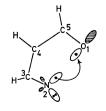
In the ground state, the *s-trans* form of 2a is slightly stable than the *s-cis* form (ca. 0.5 kcal mol⁻¹). However, the *s-cis* form is of advantage to initiate the reactions. Energy variation with the rotation of the CHO group in the low-lying states is given in Fig. 6. The rotational barriers are calculated to be ca. 5.2 kcal mol⁻¹, ca. 2.6 kcal mol⁻¹, and ca. 5.1 kcal mol⁻¹ for the S_0 , S_1 , and S_2 states of 2a, respectively. These energy barriers are rather small and, therefore, might obstruct the initiation of reaction.

Reaction (1): $1a \rightarrow 2a$. In order to estimate the reaction path and the height of the barrier roughly, the geometries in the excited states are partly optimized (only several geometrical parameters are chosen) along the reaction paths which are infered from the results of independent variations of geometrical parameters given in Figs. 4 and 5.

It is well known that the bond break and creation cannot be described correctly in terms of singly excited configurations only. Thus, all valence singly excited configurations and the doubly and triply excited configurations from three highest occupied (HO) MO's to three lowest unoccupied (LU) MO's ((S+D+T)-ECI) are included in the present optimization procedure. As a result of partial optimization, the energy in S_1 state of 1a descents along the reaction path. On the other hand, the T₁ state has an energy hill (the roughly estimated height is about 40 kcal mol⁻¹, see Fig. 8), so that this reaction would proceed hardly in the triplet state. These results are in good agreement with the experimental results that the reaction (1) could not be sensitized with benzophenone, acetophenone, or acetone.4)


As Fig. 4 shows, the O₁-N₂ bond of **1a** becomes

loose in the excited states. This is in accordance with the experiments that the compounds containing the O and N atoms adjacently such as isoxazoline derivatives are easily cleft at the O-N bond under the influence of UV-visible light.⁸⁾


Let us consider this reaction in terms of the concept of orbital interaction.9) The σ -type LUMO in 1ais the anti-bonding orbital located at the O₁-N₂ bond. When a planar molecule such as isoxazole distorts with the out-of-plane motion, the σ -type LUMO becomes to mix with the occupied π MO's. In addition, since both O and N atoms have negative net charges and lone pair electrons, they repel each other by the electrostatic force. Thus, this force may be helpful for the twisting out-of-plane motion at the O₁-N₂ bond. This is the same as in the case of peroxides and hydrazines in which O-O and N-N bonds are broken very easily. In the excited states, the orbital mixing easily occurs because the σ-type LUMO is close energetically to π^* orbital and the out-ofplane distortion easily occurs, so that the O₁-N₂ bond break is promoted.

At the S_1 state of $\mathbf{1a}$, the O_1 - N_2 bond is cleft and a biradical might be formed at the N_2 - C_3 - C_4 part. Subsequently, the internal conversion (IC) into the ground state leads to the ring closure at the N_2 and C_4 atoms. Consequently, one can expect that the O_1 - N_2 bond scission and the N_2 - C_4 bond formation occur with nearly concerted manner.

Reaction(2): $2a \rightarrow 1a$. As Fig. 5(a) shows, this reaction is favor to start from the S_1 or T_1 states which are $(n \rightarrow \pi^*)$ states localized at the $C_5 = O_1$ chromophore. Therefore, in these excited states, electron charge density accumulates on the C_5 atom. The negative charge populated on the C_5 atom might delocalize into the σ -type LUMO of the three-membered ring which is the anti-bonding orbital (σ^*_{C-N}) of the N_2 -

 C_4 bond. Thus, this type of orbital interaction and also the strain of the three-membered ring promote the N_2 - C_4 bond scission. Since σ^*_{C-C} orbital of the azirine ring lies much higher than σ^*_{C-N} orbital, it does not mix with π^*_{C-O} orbital so efficiently as σ^*_{C-N} orbital. The reaction does not experience nitrene be-

cause one of unpaired electrons is on the O_1 atom. That is, this reaction proceeds by above mentioned manner.

Reaction (3): $2a \rightarrow 3a$. As Fig. 5(b) shows, $(n \rightarrow \pi^*)$ states of the $C_3=N_2$ chromophore, S_2 and T_4 states, become stable with the increase in the $C_3-N_2-C_4$ bond angle, because the hybridization on the N atom is varied from sp² to sp due to the removal of an electron from the lone-pair orbital of N atom (Walsh's rule). Bigot et al. have shown that the ring opening of 2H-azirine occurs via ISC from $^1(n \rightarrow \pi^*)$ to $^3(n \rightarrow \pi^*)$ states. The present results accord with theirs. But this ring opening would not occur with retaining the plane of azirine ring. The fol lowing motion would be also helpful for the ring open-

ing. In fact, the present calculation shows that this conrotatory motion gives the descending potential curve in the T_1 state and leads to the O_1 – C_3 bond formation.

Padwa et al.¹²) and Schmid et al.¹³) have reported that 2*H*-azirines undergo the irreversible ring opening at the C–C bond to give nitrile ylides as the reactive intermediates. These intermediates can be intercepted

with dipolarophiles to form five-membered heterocyclic rings or other type of isomers. With this analogy, Ullman and Singh have proposed nitrile ylide intermediates as the precursor of oxazole in the reaction (3). Dipolar to examine whether the reaction (3) proceeds via this intermediate or not, the state energy variation due to the deformation of the $\rm C_{3}-N_{2}-C_{4}$ bond angle of the nitrile ylide intermediate χ is calculated. The result is shown in Fig. 7. The decrease of χ in the ground state indicates the slow energy ascent. One can expect that the nitrile ylide intermediate in the ground state transforms to an oxazole with relative low activation energy.

However, the ground-state nitrile ylide has a linear structure at the C₃-N₂-C₄ part, while the lowest excited state nitrile ylide is carbenic and has a bent structure such as

The ring opened form of 2a in the triplet state seems to be biradical. If the ground-state nitrile ylide is formed during the reaction, the bond formation between O_1 and C_3 atoms requires too much motion of nuclei, which contravenes the principle of least

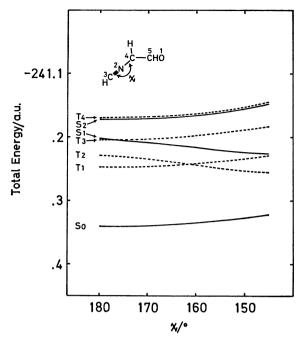


Fig. 7. State energy variation of nitrile ylide intermediate by the decrease of the $\mathrm{C_3-N_2-C_4}$ bond angle χ .

motion.¹⁶⁾ Therefore, it might be concluded that **3a** is formed without any intermediacy, that is, with almost one-step reaction.

Concluding Remarks

As Figs. 4 and 5 show, any geometrical deformation greatly destabilizes the ground states of both **1a** and **2a**, which suggests that these reactions hardly occur thermally.

As mentioned above, the azirine intermediate has different two reactive states, S₁ and S₂ states. These states are almost localized at the C=O and C=N chromophores, respectively, and lead to different reaction products each other *via* different reaction paths. This is the reason why the azirine intermediate has the wavelength dependent photochemistry.

From the calculated results, the mechanism of the photoisomerization of isoxazole can be summarized as follows;

Reaction (1): Isoxazole in the lowest $^1(n\rightarrow\pi^*)$ state interconverts to azirine intermediate in the ground state through the N_2 – C_3 – C_4 – C_5 torsional deformation which leads to the O_1 – N_2 bond scission and the N_2 – C_4 bond formation simultaneously.

Reaction (2): The S_1 state of azirine intermediate is an $(n\rightarrow\pi^*)$ state of the carbonyl chromophore. The deformation of the N_2 – C_3 – C_4 bond angle in the T_1 state produced through the ISC from the S_1 state causes the N_2 – C_4 bond rupture. Subsequently, odd electrons on the O_1 and N_2 atoms combine to form the O_1 – N_2 bond, leading to the formation of isoxazole.

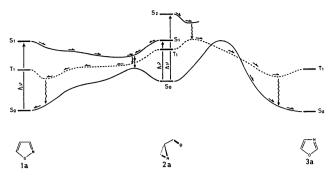


Fig. 8. The possible mechanism of the photoisomerization of isoxazole to oxazole infered from the present (S+D+T)ECI calculation.

This reaction does not experience nitrene.

Reaction (3): Azirine intermediate in S₂ state which is an $(n\rightarrow\pi^*)$ state of the ketimine chromophore causes the C₃-C₄ bond rupture by the deformation of the C₃-N₂-C₄ bond angle. It is possible to follow the conrotatory motion in such a ring opening process. The transformation to oxazole proceeds via ISC from the S₂ to T₁ states. The doubly and triply excited configurations have an effect of small modification in this reaction.⁵⁾ This reaction does not experience any intermediacy.

The possible reaction path of photoisomerization reaction of isoxazoles to oxazoles through azirine intermediates can be shown pictorially in Fig. 8.

The authers would like to express their gratitude to the Computer Center of Institute for Molecular Science and to the Data Processing Center of Kyoto University, for the use of the HITAC M-180 and FACOM M-200 computers. They also thank Dr. Shinichi Yamabe, Nara University of Education, for the use of the GAUSSIAN 70 program.

References

- 1) a) H. Wynberg and H. van Driel, J. Am. Chem. Soc., 87, 3998 (1965); b) H. Wynberg, R. M. Kellogg, H. van Driel, and G. E. Beekhuis, ibid., 89, 3501 (1967).
 - 2) P. Beak and W. Messer, Tetrahedron, 25, 3287 (1969).
- 3) a) A. W. Burgstahler and P. L. Chien, J. Am. Chem. Soc., 86, 5281 (1964); b) K. E. Wilzbach and L. Kaplan, ibid., 87, 4004 (1965).
- 4) a) E. F. Ullman and B. Singh, J. Am. Chem. Soc., 88, 1844 (1966); b) B. Singh and E. F. Ullman, ibid., 89, 6911 (1967); c) B. Singh, A. Zweig, and J. B. Gallivan, ibid., **94**, 1199 (1972).
- 5) In order to compare the electronic structure of 1a and 2a with those of 1 and 2, CNDO/S-CI calculations are carried out for 3,5-diphenylisoxazole and 2-benzoyl-3phenyl-2*H*-azirine($Ar_1 = Ar_2 = C_6H_5$ in Fig. 1). See, H. Tanaka, T. Matsushita, Y. Osamura, and K. Nishimoto, Int. J. Quantum Chem., 18, 463 (1980).
- 6) W. J. Hehre, W. A. Lathan, M. Ditchfield, M. D. Newton, and J. A. Pople, GAUSSIAN 70, Program No. 236, Quantum Chemistry Program Exchange, Indiana University, Bllomington, Indiana.
- 7) a) O. L. Stiefvater, J. Chem. Phys., 63, 2560 (1975); b) A. Kumar, J. Sheridan, and O. L. Stiefvater, Z. Naturforsch., Tail A, 33A, 145 (1978).
 8) a) T. Matsuura and Y. Ito, Tetrahedron Lett., 1973,
- 2283; b) T. Mukai, T. Kumagai, and O. Seshimoto, Pure Appl. Chem., 49, 287 (1977).
- 9) K. Fukui, "Theory of Orientation and Stereoselec-Springer-Verlag, New York (1975). tion.
- 10) A. D. Walsh, J. Chem. Soc., 1953, 2260.
- 11) B. Bigot, A. Sevin, and A. Devaquet, J. Am. Chem. Soc., 100, 6924 (1978).
- 12) A. Padwa, M. Dahran, J. Smolanoff, and S. I. Wetmore Jr., Pure Appl. Chem., 33, 269 (1973).
- 13) P. Claus, T. Doppler, N. Gakis, M. Georgarakis, H. Giezendanner, P. Gilgen, H. Heimgartner, B. Jackson, M. Markey, N. S. Narasimhan, H. J. Rosenkranz, A. Wunderli, H. J. Hansen, and H. Schmid, Pure Appl. Chem., **33**, 339 (1973).
- 14) A. Padwa, Acc. Chem. Res., 9, 371 (1976), and references cited therein.
- 15) E. F. Ullman, Acc. Chem. Res., 1, 353 (1968).
- 16) F. O. Rice and E. Teller, J. Chem. Phys., 6, 489 (1938).